поставки оборудования
ICQ: 238-612
Skype: lantorg1
+38 (057) 780 - 40 - 63
+38 (095) 762 - 44 - 96
+38 (063) 638 - 79 - 24
+38 (067) 961 - 56 - 02
г. Харьков, Московский проспект, 122
ГлавнаяСтатьиВыбираем оборудование → Оптические трансиверы SFP и SFP+, часть 2

Оптические трансиверы SFP и SFP+, часть 2

В прошлой статье мы рассмотрели, что из себя представляют оптические трансиверы форм-фактора SFP и SFP+ в общем. В данной же хотели бы подробнее разобрать несколько более тонких моментов.

В том числе остановимся на классификации трансиверов по типу оптического разъема, стандартам и технологии спектрального уплотнения.

Заторцовка кабеля

Оптический кабель для подключения к SFP-модулям должен быть заторцован в коннектор LC (Lucent/Little/Local Connector) или SC (Subscriber/Square/Standard Connector).

Соответственно, модули выпускаются с двумя типами разъемов под кабель: SC и LC.

Здесь нужно отметить, что двухволоконные оптические трансиверы форматов SFP, SFP+ практически всегда идут с разъемом LC, так как SC более крупный, и в дуплексный модуль два таких разъема не поместится. Использование SC возможно только в одноволоконных.

SC - один из первых керамических коннекторов, предназначенных для облегчения подключения оптических кабелей к разнообразным устройствам и предохранения среза кабеля от загрязнения и механических повреждений. Учитывая микроскопическую толщину волокон оптического кабеля, даже одна пылинка может послужить причиной значительного ухудшения качества связи или разрыва соединения.

Коннектор LC был разработан компанией Lucent, как улучшенный вариант SC. Обладает вдвое меньшими габаритами и отщелкивателем, что облегчает обращение с оптическими кабелями в условиях большой плотности подключений/волокон.

В целом, стандарты Ethernet допускают использование как одного, так и второго коннектора, однако большинство производителей, все же, устанавливают на своих модулях разъемы под LC. Даже одноволоконные SFP WDM модули, которые стандартно всегда выпускались с разъемом SC, сейчас есть и с LC разъемом.

Дополнительно об оптических разъемах можно почитать в этой статье.

Стандарты

Оптические трансиверы работают в сетях Ethernet и потому должны отвечать одному из соответствующих стандартов. Для удобства мы свели параметры таковых в таблицу.

Скорость приема-передачи

Стандарт

Год

Стандарт

Кол-во волокон

Тип волокна

Длина волны излучателя, нм

Длина

100 Мбит/с

IEEE 802.3u

1995

100Base-FX

2

многомодовое, полный дуплекс

1310

2 км

2

многомодовое, полудуплекс при гарантированном обнаружении коллизий

1310

400 м

TIA/EIA-785-1-2002

2001

100Base-SX

2

многомодовое

850

300 м

IEEE 802.3ah

2004

100Base-LX10

2

одномодовое

1310

10 км

100Base-BX10

1

одномодовое

1310/1550

10 км

1 Гбит/с

IEEE 802.3z

1998

1000Base-LX

2

многомодовое

1270-1355

550 м

одномодовое

5 км

1000Base-SX

2

мультимодовое

770-860

550 м

IEEE 802.3ah

2004

1000Base-LX10

2

одномодовое

1270-1355

10 км

1000Base-BX10

1

одномодовое

1310/1490

10 км

-

-

1000Base-EX

2

одномодовое

1310

40 км

-

-

1000Base-ZX

2

одномодовое

1550

70 км

10 Гбит/с

IEEE 802.3ae

2003

10GBase-SR

2

мультимодовое

850

300 м

10GBase-LX4

2

мультимодовое

1275, 1300, 1325, 1350

300 м

2

одномодовое

1275, 1300, 1325, 1350

10 км

10GBase-LR

2

одномодовое

1310

10 км

10GBase-ER

2

одномодовое

1550

40 км

IEEE 802.3aq

2006

10GBase-LRM

2

мультимодовое

1310

220 м

40 Гбит/с

IEEE 802.3ba

2010

40GBase-SR4

2

мультимодовое

850

100 м

40GBase-LR4

2

одномодовое

1300

10 км

IEEE 802.3bg

2011

40GBase-FR

2

одномодовое

1310/1550

2 км

100 Гбит/с

IEEE 802.3ba

2010

100GBase-SR10

2

мультимодовое

850

125 м

100GBase-LR4

2

одномодовое

1295, 1300, 1305, 1310

10 км

100GBase-ER4

2

одномодовое

1295, 1300, 1305, 1310

40 км

Окна прозрачности оптического одномодового волокна

Подавляющее большинство современного оптического кабеля относится к стандарту SMF G.652 разных версий. Последняя версия стандарта, G.652 (11/16) была выпущена в ноябре 2016 года. Стандарт описывает так называемое стандартное одномодовое волокно.

Передача света по оптическому волокну основана на принципе полного внутреннего отражения на границе сред с разной оптической плотностью. Для реализации данного принципа, волокно делается двух- или многослойным. Светопроводящая сердцевина окружена слоями прозрачных оболочек из материалов с меньшими показателями преломления, благодарю чему на границе слоев и происходит полное отражение.

Оптоволокно, как среда передачи, характеризуется затуханием и дисперсией. Затухание — потеря мощности сигнала при прохождении волокна, выражается в уровне потерь на километр дистанции (дБ/км). Затухание зависит от материала среды передачи и длины волны передатчика. Кривая зависимости спектра поглощения от длины волны содержит несколько пиков с минимальным затуханием. Именно эти точки на графике, называемые также окнами прозрачности или телекоммуникационными окнами, и были выбраны в качестве основы для подбора излучателей.

Окна прозрачности оптоволокна

Выделяют такие шесть окон прозрачности одномодового волокна:

  • O-диапазон (Original): 1260-1360 нм;
  • E-диапазон (Extended): 1360-1460 нм;
  • S-диапазон (Short wavelength): 1460-1530 нм;
  • C-диапазон (Conventional): 1530-1565 нм;
  • L-диапазон (Long wavelength): 1565-1625 нм;
  • U-диапазон (Ultra-long wavelength): 1625-1675 нм.

В приближении свойства волокна внутри каждого диапазона можно считать примерно одинаковыми. Пик прозрачности приходится, как правило, на длинноволновый конец E-диапазона. Удельное затухание в O-диапазоне примерно в полтора раза выше, чем в S- и в С-диапазоне, удельная хроматическая дисперсия — наоборот, имеет нулевой минимум на длине волны в 1310 нм и выше нуля в C-диапазоне.

Первоначально, для организации дуплексного соединения при помощи оптического кабеля, использовались пары волокон, отвечающих каждое за свое направление передачи. Это удобно, но расточительно по отношению к ресурсу прокладываемого кабеля. Для нивелирования данной проблемы была разработана технология спектрального уплотнения, или, иначе, волнового мультиплексирования.

Технологии волнового мультиплексирования, WDM/CWDM/DWDM

 WDM

В основе технологии WDM, Wavelength Division Multiplexing, лежит передача нескольких световых потоков с разной длиной света по одному волокну.

Технология WDM

Базовая технология WDM допускает создание одного дуплексного соединения, при наиболее часто используемой волной паре 1310/1550 нм, из O- и C-диапазона соответственно. Для реализации технологии используется пара «зеркальных» модулей, один с передатчиком 1550 нм и приемником 1310 нм, второй — наоборот, с передатчиком 1310 нм и приемником 1550 нм.

WDM - передача по одному волокну

Разница в длине волны обоих каналов составляет 240 нм, что позволяет различать оба сигнала без использования специальных средств детектирования. Основная используемая пара 1310/1550 позволяет создавать устойчивые соединения на расстояниях до 60 км.

В редких случаях используются также пары 1490/1550, 1510/1570 и прочие варианты из окон прозрачности с меньшим удельным затуханием относительно O-диапазона, что позволяет организовывать более «дальнобойные» соединения. Кроме того, встречается комбинация 1310/1490, когда параллельно с данными на длине волны 1550 нм передается сигнал кабельного телевидения.

 CWDM

Следующим этапом развития стала технология Coarse WDM, CWDM, грубое спектральное мультиплексирование. CWDM позволяет передавать до 18 потоков данных в диапазоне волн от 1270 до 1610 нм с шагом в 20 нм.

Спектр CWDM

CWDM модули в подавляющем большинстве случаев двухволоконные. Существуют BiDi, двунаправленные SFP CWDM модули, прием и передача в которых идет по одному волокну, но в Украине они пока встречаются в продаже довольно редко.

Пример модуля CWDM

Передатчики (модули) SFP и SFP+ CWDM передают на одной какой-либо длине волны.

Приемник же у таких модулей широкополосный, т. е.принимает сигнал на любой длине волны, что позволяет организовать одиночный дуплексный канал с любыми двумя модулями, сертифицированными на соответствие CWDM. Для одновременного пропуска нескольких каналов, используются пассивные мультиплексоры-демультиплексоры, которые собирают потоки данных от «цветных» SFP-модулей (у каждого из которых передатчик со своей длиной волны) в единый луч для передачи по волокну и разбирают его на индивидуальные потоки в конечной точке. Универсальность приемников обеспечивает большую гибкость в организации сетей.

 DWDM

Последняя на сегодняшний день разработка — Dense WDM (DWDM), плотное спектральное мультиплексирование, позволяет организовать до 24, а в изготовленных на заказ системах — и до 80 дуплексных каналов связи, в диапазоне волн 1528,77-1563,86 нм с шагом 0,79-0,80 нм.

Сравнение CWDM и DWDM

Естественно, чем плотнее размещение каналов, тем более жесткими становятся допуски при изготовлении излучателей. Если для обычных модулей допустимым является погрешность длины волны в пределах 40 нм, для трансиверов WDM такая погрешность снижается до 20-30 нм, для CWDM она составляет уже 6-7 нм, а для DWDM - всего 0,1 нм. Чем меньше допуски, тем дороже обходится производство излучателей.

Тем не менее, несмотря на гораздо более высокую стоимость оборудования, у DWDM есть следующие серьезные преимущества перед CWDM:
1) передача заметно большего количества каналов по одному волокну;
2) передача большего числа каналов на большие дистанции, благодаря тому, что DWDM работает в диапазоне наибольшей прозрачности (1525-1565 нм).

Пример модуля DWDM

Напоследок следует упомянуть, что, в отличие от исходного стандарта WDM, в CWDM и DWDM каждый индивидуальный канал может доставлять данные на скоростях, как в 1 Гбит/с, так и 10 Гбит/с. В свою очередь, стандарты 40 Гбит и 100 Гбит Ethernet реализуются путем объединения пропускной способности нескольких 10 Гбит каналов.

Что такое OADM модули и WDM-фильтры (делители)?

Несмотря на созвучное название, OADM модуль не является оптическим трансивером, а представляет собой, скорее, оптический фильтр, один из видов мультиплексора.

На рисунке: OADM модуль.

OADM модуль.

Узлы Optical Add Drop Multiplexor (OADM) используются для отделения потоков данных в промежуточных точках. OADM, иначе Add-Drop модуль, — это оптическое устройство, устанавливаемое в разрыв оптического кабеля и позволяющее отфильтровать из общего луча два потока данных. OADM, как и все мультиплексоры, в отличие от SFP и SFP+ трансиверов — пассивные устройства, благодаря чему они не требуют подвода питания и могут быть установлены в любых условиях, вплоть до самых жестких. Правильно спланированный комплект OADM позволяет обойтись без оконечного мультиплексора и «раздать» потоки данных промежуточным точкам.

Недостатком OADM является снижение мощности и отделяемого, и транзитного сигналов, а значит и максимальной дальности устойчивой передачи. По различным данным, снижение мощности составляет от 1,5 до 2 дБ на каждом Add-Drop.

Еще более упрощенное устройство — WDM-фильтр, позволяет отделить из общего потока только один канал с определенной длиной волны. Таким образом, можно собирать аналоги OADM на основе произвольных пар, что увеличивает гибкость построения сети до максимума.

На рисунке: WDM фильтр (делитель).

WDM делитель

WDM-фильтр может использоваться как в сетях с WDM мультиплексированием, так и с CWDM, DWDM уплотнением.
Так же, как и в CWDM, в спецификацию DWDM заложено использование OADM и фильтров.

Multi-source agreements (MSA)

Часто в сопроводительной документации к SFP и SFP+ трансиверов можно увидеть информацию о поддержке MSA. Что это такое?

MSA - промышленные соглашения между производителями модулей, обеспечивающие сквозную совместимость между трансиверами и сетевым оборудованием разных компаний и соответствие всех производимых приемопередатчиков общепринятым стандартам. Установка в оборудовании SFP-портов, соответствующих MSA, расширяет ассортимент совместимых модулей и обеспечивает существование конкурентного рынка для взаимозаменяемых продуктов.

MSA для SFP/SFP+ устанавливают следующие параметры:

1. Механический интерфейс:

  • габариты модуля;
  • параметры механического соединения коннекторов с платой;
  • размещение элементов на печатной плате;
  • усилие, необходимое для установки модуля в/извлечение из разъема;
  • нормативы маркировки.

2. Электрический интерфейс:

  • распиновка;
  • параметры питания;
  • тайминги и сигналы ввода-вывода.

3. Программный интерфейс:

  • тип микросхемы ППЗУ;
  • форматы данных и предустановленные поля прошивок;
  • параметры интерфейса управления I2C;
  • функции DDM (Digital Diagnostics Monitoring).

На сегодняшний день к модулям формата SFP/SFP+ относятся три спецификации MSA, выпущенных комитетом SNIA SFF, соблюдать которые обязалось большинство участников рынка:
SFP - ta.snia.org/kws/public/download/617/INF-8074.PDF
SFP+ - ta.snia.org/kws/public/download/268/SFF-8431.PDF
DDM - https://ta.snia.org/kws/public/download/294/SFF-8472.PDF


Оцените, пожалуйста, полезность/интересность статьи. Нам важно ваше мнение!

Оценка:   5.0 (голосов 5)
Дата публикации: 12.04.2017
Поделиться с друзьями:                                                                            

Также советуем почитать:



Комментарии

Пока нет комментариев

Написать комментарий

Ссылки на другие сайты из комментариев удаляются. Спасибо за понимание.


Подписаться на получение новостей
* обязательные поля
Не чаще 1 письма в неделю. Только полезная информация. Убедитесь сами – посмотрите наш архив рассылок.